Frp Composites In Civil Engineering

Author: Jin-Guang Teng
Editor: Taylor & Francis
ISBN: 9780080439457
File Size: 36,66 MB
Format: PDF
Read: 476
Download

This Proceedings contains the papers presented at the International Conference on FRP Composites in Civil Engineering, held in Hong Kong, China, on 12-15 December 2001. The papers, contributed from 24 countries, cover a wide spectrum of topics and demonstrate the recent advances in the application of FRP (Fibre-reinforced polymer) composites in civil engineering, while pointing to future directions of research in this exciting area.

Developments In Fiber Reinforced Polymer Frp Composites For Civil Engineering

Author: Nasim Uddin
Editor: Elsevier
ISBN: 0857098950
File Size: 20,32 MB
Format: PDF, Kindle
Read: 9863
Download

The use of fiber-reinforced polymer (FRP) composite materials has had a dramatic impact on civil engineering techniques over the past three decades. FRPs are an ideal material for structural applications where high strength-to-weight and stiffness-to-weight ratios are required. Developments in fiber-reinforced polymer (FRP) composites for civil engineering outlines the latest developments in fiber-reinforced polymer (FRP) composites and their applications in civil engineering. Part one outlines the general developments of fiber-reinforced polymer (FRP) use, reviewing recent advancements in the design and processing techniques of composite materials. Part two outlines particular types of fiber-reinforced polymers and covers their use in a wide range of civil engineering and structural applications, including their use in disaster-resistant buildings, strengthening steel structures and bridge superstructures. With its distinguished editor and international team of contributors, Developments in fiber-reinforced polymer (FRP) composites for civil engineering is an essential text for researchers and engineers in the field of civil engineering and industries such as bridge and building construction. Outlines the latest developments in fiber-reinforced polymer composites and their applications in civil engineering Reviews recent advancements in the design and processing techniques of composite materials Covers the use of particular types of fiber-reinforced polymers in a wide range of civil engineering and structural applications

The International Handbook Of Frp Composites In Civil Engineering

Author: Manoochehr Zoghi
Editor: CRC Press
ISBN: 0849320135
File Size: 37,88 MB
Format: PDF, ePub, Mobi
Read: 8503
Download

Fiber-reinforced polymer (FRP) composites have become an integral part of the construction industry because of their versatility, enhanced durability and resistance to fatigue and corrosion, high strength-to-weight ratio, accelerated construction, and lower maintenance and life-cycle costs. Advanced FRP composite materials are also emerging for a wide range of civil infrastructure applications. These include everything from bridge decks, bridge strengthening and repairs, and seismic retrofit to marine waterfront structures and sustainable, energy-efficient housing. The International Handbook of FRP Composites in Civil Engineering brings together a wealth of information on advances in materials, techniques, practices, nondestructive testing, and structural health monitoring of FRP composites, specifically for civil infrastructure. With a focus on professional applications, the handbook supplies design guidelines and standards of practice from around the world. It also includes helpful design formulas, tables, and charts to provide immediate answers to common questions. Organized into seven parts, the handbook covers: FRP fundamentals, including history, codes and standards, manufacturing, materials, mechanics, and life-cycle costs Bridge deck applications and the critical topic of connection design for FRP structural members External reinforcement for rehabilitation, including the strengthening of reinforced concrete, masonry, wood, and metallic structures FRP composites for the reinforcement of concrete structures, including material characteristics, design procedures, and quality assurance–quality control (QA/QC) issues Hybrid FRP composite systems, with an emphasis on design, construction, QA/QC, and repair Quality control, quality assurance, and evaluation using nondestructive testing, and in-service monitoring using structural health monitoring of FRP composites, including smart composites that can actively sense and respond to the environment and internal states FRP-related books, journals, conference proceedings, organizations, and research sources Comprehensive yet concise, this is an invaluable reference for practicing engineers and construction professionals, as well as researchers and students. It offers ready-to-use information on how FRP composites can be more effectively utilized in new construction, repair and reconstruction, and architectural engineering.

Developments In Fiber Reinforced Polymer Frp Composites For Civil Engineering

Author: S. Moy
Editor: Elsevier Inc. Chapters
ISBN: 0128087706
File Size: 22,71 MB
Format: PDF, Kindle
Read: 2765
Download

This chapter deals with the uses of advanced composite materials in the construction industry. After considering the advantages of using composites and methods of fabrication, it outlines the surprisingly wide range of applications of composites. Examples are given from around the world of components and complete buildings and bridges, railway and other infrastructure, geotechnical applications and pipes for the water sector. Finally a number of more unusual or future possibilities are presented.

Developments In Fiber Reinforced Polymer Frp Composites For Civil Engineering

Author: P. Qiao
Editor: Elsevier Inc. Chapters
ISBN: 0128087803
File Size: 35,32 MB
Format: PDF, ePub, Mobi
Read: 5355
Download

This chapter presents a systematic approach for material characterization, analysis, and design of all-fiber-reinforced polymer or plastic (FRP) composite structures. The suggested ‘bottom-up’ analysis concept is applied throughout the procedure, from materials/microstructures, to macro components, to structural members, and finally to structural systems, thus providing a systematic analysis methodology for all-FRP composite structures. The systematic approach described in this chapter can be used efficiently to analyze and design FRP shapes and bridge systems and also develop new design concepts for all composite structures.

Developments In Fiber Reinforced Polymer Frp Composites For Civil Engineering

Author: R. Liang
Editor: Elsevier Inc. Chapters
ISBN: 012808779X
File Size: 22,61 MB
Format: PDF, Kindle
Read: 9795
Download

This chapter presents dozens of select environmental engineering applications of fiber-reinforced polymer (FRP) composite materials with emphasis on their environmental benefits, followed by discussions on durability of composites. Significance of design codes and specifications in promoting and advancing the applications of FRP composites is addressed. With ever increasing attention toward a sustainable built environment, FRP composites have potential to be selected as a material of choice because of the performance and design advantages of FRPs.

Durability Of Composites For Civil Structural Applications

Author: Vistasp M. Karbhari
Editor: Elsevier
ISBN: 1845693566
File Size: 73,31 MB
Format: PDF, Kindle
Read: 1274
Download

Given the increasing use of fibre-reinforced polymer (FRP) composites in structural civil engineering, there is a vital need for critical information related to the overall durability and performance of these new materials under harsh and changing conditions. Durability of composites for civil and structural applications provides a thorough overview of key aspects of the durability of FRP composites for designers and practising engineers. Part one discusses general aspects of composite durability. Chapters examine mechanisms of degradation such as moisture, aqueous solutions, UV radiation, temperature, fatigue and wear. Part two then discusses ways of using FRP composites, including strengthening and rehabilitating existing structures with FRP composites, and monitoring techniques such as structural health monitoring. Durability of composites for civil and structural applications provides practising engineers, decision makers and students with a useful and fundamental guide to the use of FRP composites within civil and structural engineering. Provides a thorough overview of key aspects of the durability of composites Examines mechanisms of degradation such as aqueous solutions, moisture, fatigue and wear Discusses ways of using FRP composites, including strengthening and rehabilitating existing structures

Advances In Frp Composites In Civil Engineering

Author: Lieping Ye
Editor: Springer Science & Business Media
ISBN: 3642174876
File Size: 57,78 MB
Format: PDF, Kindle
Read: 7999
Download

"Advances in FRP Composites in Civil Engineering" contains the papers presented at the 5th International Conference on Fiber Reinforced Polymer (FRP) Composites in Civil Engineering in 2010, which is an official conference of the International Institute for FRP in Construction (IIFC). The book includes 7 keynote papers which are presented by top professors and engineers in the world and 203 papers covering a wide spectrum of topics. These important papers not only demonstrate the recent advances in the application of FRP composites in civil engineering, but also point to future research endeavors in this exciting area. Researchers and professionals in the field of civil engineering will find this book is exceedingly valuable. Prof. Lieping Ye and Dr. Peng Feng both work at the Department of Civil Engineering, Tsinghua University, China. Qingrui Yue is a Professor at China Metallurgical Group Corporation.

Developments In Fiber Reinforced Polymer Frp Composites For Civil Engineering

Author: D. Lau
Editor: Elsevier Inc. Chapters
ISBN: 0128087714
File Size: 46,44 MB
Format: PDF, ePub, Docs
Read: 5635
Download

Fiber-reinforced polymer (FRP) has been a practical alternative construction material for replacing steel in the construction industry for several decades. However, some mechanical weaknesses of FRP are still unresolved, which limit the extensive use of this material in civil infrastructure. In order to mitigate the disadvantage of using FRP, the concept of hybridization is delivered here. The advantages of hybrid structural systems include the cost effectiveness and the ability to optimize the cross section based on material properties of each constituent material. In this chapter, two major applications of hybrid FRP composites are discussed: (1) the internal reinforcement in reinforced concrete (RC) structures, and (2) the cables in long-span cable-stayed bridges. In order to improve the flexural ductility of FRP-reinforced concrete (FRPRC) beam, the additional steel longitudinal reinforcement is proposed such that the hybrid FRPRC beams contain both FRP and steel reinforcement. In order to improve the vibrational problem in pure FRP cables used in bridge construction, an innovative hybrid FRP cable which can inherently incorporate a smart damper is proposed. The objective of this chapter is to deliver an up-to-date review of hybrid FRP composite structures, including both the industrial practice and the research in academia. The advantages of using hybrid FRP composites for construction will also be described with experimental support. It is hoped that the reader will appreciate the concept of hybridization, which leads to the efficient utilization of all constituent materials in a bonded system.

Developments In Fiber Reinforced Polymer Frp Composites For Civil Engineering

Author: O. Gunes
Editor: Elsevier Inc. Chapters
ISBN: 0128087684
File Size: 74,26 MB
Format: PDF, ePub, Mobi
Read: 2015
Download

Fiber-reinforced polymer (FRP) composite materials have been increasingly used in civil engineering applications in the past two decades. Their wide ranging use, however, is still not realized due to a few fundamental issues including high material costs, relatively short history of applications and the gaps in the development of established standards. Design safety requires that all possible modes and mechanisms of failure are identified, characterized, and accounted for in the design procedures. This chapter provides a review of the failure types encountered in structural engineering applications of FRP and the preventive methods and strategies that have been developed to eliminate or delay such failures. As part of preventive measures, various non-destructive testing (NDT) and structural health monitoring (SHM) methods used for monitoring FRP applications are discussed with illustrative examples.

Developments In Fiber Reinforced Polymer Frp Composites For Civil Engineering

Author: M. Dawood
Editor: Elsevier Inc. Chapters
ISBN: 0128087781
File Size: 30,28 MB
Format: PDF, ePub, Mobi
Read: 2518
Download

This chapter summarizes the recent advances in the use of fiber-reinforced polymer (FRP) materials for repair, rehabilitation, and strengthening of steel structures. Conventional methods of strengthening and repairing steel structures are presented. The advantages and limitations of using FRP materials are summarized. Topics presented include strengthening of flexural members, strengthening with prestressed FRP materials, stress-based and fracture mechanics-based approaches to evaluating bond behavior, repair of cracked steel members, and strengthening of slender members subjected to compression forces. The chapter concludes with a brief discussion of future trends in this field and a summary of other resources for further information.

Strengthening Of Reinforced Concrete Structures

Author: L C Hollaway
Editor: Elsevier
ISBN: 1855737612
File Size: 53,96 MB
Format: PDF
Read: 607
Download

The in situ rehabilitation or upgrading of reinforced concrete members using bonded steel plates is an effective, convenient and economic method of improving structural performance. However, disadvantages inherent in the use of steel have stimulated research into the possibility of using fibre reinforced polymer (FRP) materials in its place, providing a non-corrosive, more versatile strengthening system. This book presents a detailed study of the flexural strengthening of reinforced and prestressed concrete members using fibre reinforces polymer composite plates. It is based to a large extent on material developed or provided by the consortium which studied the technology of plate bonding to upgrade structural units using carbon fibre / polymer composite materials. The research and trial tests were undertaken as part of the ROBUST project, one of several ventures in the UK Government's DTI-LINK Structural Composites Programme. The book has been designed for practising structural and civil engineers seeking to understand the principles and design technology of plate bonding, and for final year undergraduate and postgraduate engineers studying the principles of highway and bridge engineering and structural engineering. Detailed study of the flexural strengthening of reinforced and prestressed concrete members using fibre reinforced polymer composites Contains in-depth case histories

Durability Of Fiber Reinforced Polymer Frp Composites For Construction

Author:
Editor:
ISBN:
File Size: 26,96 MB
Format: PDF, Mobi
Read: 2331
Download


Developments In Fiber Reinforced Polymer Frp Composites For Civil Engineering

Author: Y. Gowayed
Editor: Elsevier Inc. Chapters
ISBN: 0128087641
File Size: 75,28 MB
Format: PDF, Kindle
Read: 2649
Download

In fiber reinforced plastics (FRP), as a special type of polymer matrix composite, fibers provide the stiffness and strength while the surrounding plastic matrix transfers the stress between fibers and protects them. In this chapter, the role of fibers in FRP is delineated, their types and properties are discussed and the fabric forms in which they can be formed and used to reinforce FRP are presented. A special focus is given to the effect of the chemical structure of fibers on the stability and the level of anisotropy of their mechanical response. Furthermore, the effect of assembling these fibers into yarns and fabrics on the response of the FRP is presented as basis for further readings.

Developments In Fiber Reinforced Polymer Frp Composites For Civil Engineering

Author: J. Wang
Editor: Elsevier Inc. Chapters
ISBN: 0128087692
File Size: 17,69 MB
Format: PDF, ePub, Docs
Read: 2336
Download

Strengthening reinforced concrete (RC) members using fiber reinforced polymer (FRP) composites through external bonding has emerged as a viable technique to retrofit/repair deteriorated infrastructure. The interface between the FRP and concrete plays a critical role in this technique. This chapter discusses the analytical and experimental methods used to examine the integrity and long-term durability of this interface. Interface stress models, including the commonly adopted two-parameter elastic foundation model and a novel three-parameter elastic foundation model (3PEF) are first presented, which can be used as general tools to analyze and evaluate the design of the FRP strengthening system. Then two interface fracture models – linear elastic fracture mechanics and cohesive zone model – are established to analyze the potential and full debonding process of the FRP–concrete interface. Under the synergistic effects of the service loads and environments species, the FRP–concrete interface experiences deterioration, which may reduce its long-term durability. A novel experimental method, environment-assisted subcritical debonding testing, is then introduced to evaluate this deteriorating process. The existing small cracks along the FRP–concrete interface can grow slowly even if the mechanical load is lower than the critical value. This slow-crack growth process is known as environment-assisted subcritical cracking. A series of subcritical cracking tests are conducted using a wedge-driven test setup t o gain the ability to accurately predict the long-term durability of the FRP–concrete interface.

Developments In Fiber Reinforced Polymer Frp Composites For Civil Engineering

Author: Y. Kitane
Editor: Elsevier Inc. Chapters
ISBN: 0128087773
File Size: 38,64 MB
Format: PDF, Kindle
Read: 609
Download

This chapter first reviews current structural applications of fiber-reinforced polymer (FRP) composites in bridge structures, and describes advantages of FRP in bridge applications. This chapter then introduces the design of a hybrid FRP-concrete bridge superstructure, which has been developed at The University at Buffalo for the past ten years, and discusses structural performance of the superstructure based on extensive experimental and analytical studies.

Composites For Construction

Author: Lawrence C. Bank
Editor: John Wiley & Sons
ISBN: 0471681261
File Size: 57,85 MB
Format: PDF, Mobi
Read: 1169
Download

This text teaches readers how to analyse and design with fiber reinforced polymers (FRP) for civil engineering applications. It demystifies FRP composites and demonstrates applications where their properties make them ideal materials to consider off-shore and waterfront structures, factories, and storage tanks.

Frp Composites In Civil Engineering Cice 2004

Author: R. Seracino
Editor: CRC Press
ISBN: 9780203970850
File Size: 41,57 MB
Format: PDF, Mobi
Read: 7130
Download

The range of fibre-reinforced polymer (FRP) applications in new construction, and in the retrofitting of existing civil engineering infrastructure, is continuing to grow worldwide. Furthermore, this progress is being matched by advancing research into all aspects of analysis and design. The Second International Conference on FRP Composites in

Developments In Fiber Reinforced Polymer Frp Composites For Civil Engineering

Author: R. El-Hajjar
Editor: Elsevier Inc. Chapters
ISBN: 0128087668
File Size: 61,33 MB
Format: PDF, ePub
Read: 8251
Download

Modern structural applications of composite materials are dictated by the processing methods available. In this chapter, we introduce recent developments related to the manufacturing of composites in civil engineering applications using vacuum assisted resin transfer molding, pultrusion, and automated fiber placement.

Developments In Fiber Reinforced Polymer Frp Composites For Civil Engineering

Author: O. Faruk
Editor: Elsevier Inc. Chapters
ISBN: 012808765X
File Size: 38,96 MB
Format: PDF, Mobi
Read: 936
Download

Biofibers are emerging as a low cost, lightweight and environmentally superior alternative in composites. Generally, different fibers exhibit different properties that are fundamentally important to the resultant composites. This chapter gives an overview of the most common biofibers in biocomposites, covering their sources, types, structure, composition, and properties. Drawbacks of biofibers, such as dimensional instability, moisture absorption, biological, ultraviolet and fire resistance, will be discussed. The chapter will focus on their modifications (physical and chemical methods), matrices based on their petrochemical resources and bio-based, processing of biofiber reinforced plastic composites covering the factors influencing processing (humidity, additives, machinery, processing parameter, fiber content and length), and processing techniques (compounding, compression molding, extrusion, injection molding, pultrusion and others) will be discussed. The properties of the biocomposites based on their mechanical, physical, and biological behavior will also be covered. Lastly, this chapter concludes with recent developments and trends of biocomposites in the near future in civil engineering.